Gerhard Müller

Department of Physics, University of Rhode Island

URI
Think Big, We Do.
Rhode Island Seal

Teaching

 

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

1. Equilibrium Thermodynamics I: Introduction [tsc1]

  • Thermodynamic system and thermodynamic state
  • State variables
  • Equations of state
  • Thermodynamic equation of state for a classical gas
  • Encoding thermodynamic information
  • Thermodynamic contacts
  • Zeroth law of thermodynamics
  • First law of thermodynamics
  • Second law of thermodynamics
  • Third law of themodynamics
  • Thermodynamic processes
  • Differentials

Exercises:

  • Exact and inexact differentials I [tex5]
  • Fast heat [tex143]
  • Expansion and compression of nitrogen gas [tex144]
  • Bathtub icebreaker [tex145]
  • Exact and inexact differentials II [tex146]
  • Exact and inexact differentials III [tex168]

Additional materials:

  • Thermodynamics overview [tln2]
  • Equations of state for ideal gas and real fluid [tsl12]
  • Physical constants [tsl47]
  • Relevant textbooks [tln90]  

2. Equilibrium Thermodynamics II: Engines [tsc2]

  • Carnot engine
  • Efficiency of Carnot engine
  • Maximum efficiency of heat engine
  • Absolute temperature
  • Entropy
  • Internal energy
  • Reversible processes in fluid systems
  • Gasoline engine (Otto cycle)
  • Diesel engine
  • Escher-Wyss gas turbine
  • Stirling engine

Exercises:

  • Entropy change caused by expanding ideal gas [tex1]
  • Heating the air in a room [tex2]
  • Carnot engine of a classical ideal gas [tex3]
  • Carnot engine for an ideal paramagnet [tex4]
  • Adiabates of the classical ideal gas [tex7]
  • Idealized Otto cycle [tex8]
  • Work extracted from finite heat reservoir in infinite environment [tex9]
  • Work extracted from finite heat reservoir in finite environment [tex10]
  • Mayer’s relation for heat capacities of the classical ideal gas [tex12]
  • Room heater: electric radiator versus heat pump [tex13]
  • Idealized Diesel cycle [tex16]
  • Roads from 1 to 2: isothermal, isentropic, isochoric, isobaric [tex25]
  • Positive and negative heat capacities [tex26]
  • Ideal-gas engine with two-step cycle I [tex106]
  • Ideal-gas engine with two-step cycle II [tex107]
  • Joule cycle [tex108]
  • Idealized Stirling cycle [tex131]
  • Absolute temperature from measurements [tex134] 
  • Circular heat engine I [tex147]
  • Circular heat engine II [tex148]
  • Square heat engine [tex149]
  • Work performance and heat transfer [tex155]

3. Equilibrium Thermodynamics III: Free Energies [tsc3] 

  • Fundamental equation of thermodynamics
  • Analogy with mechanical equilibrium
  • Free energy in a mechanical system
  • Free energy in a thermodynamic system
  • Thermodynamic potentials for a fluid system
  • Differentials of thermodynamic potentials
  • Facts about thermodynamic potentials
  • Thermodynamic functions for fluid system
  • Substitutions for magnetic system
  • Maxwell’s relations
  • Free energy stored and retrieved
  • Response functions
  • Thermal response functions
  • Mechanical response functions
  • Magnetic response functions
  • Isothermal and adiabatic processes
  • Conditions for thermal equilibrium
  • Stability of thermal equilibrium

Exercises:

  • Retrievable and irretrievable energy put in heat reservoir [tex6] 

Additional materials:

  • Legendre transform [tln77] 
  • Alternative set of thermodynamic potentials [tln9]
  • Useful relations between partial derivatives [tln6]
  • Jacobi transformations [tln21]

4. Equilibrium Thermodynamics IV: Applications [tsc4]

  • Classical ideal gas
  • Van der Waals gas
  • Cooling a gas by free expansion (Joule effect)
  • Cooling a gas by throttling (Joule-Thomson effect)
  • Entropy of mixing in classical ideal gas
  • Ideal paramagnet
  • Adiabatic demagnetization
  • Ideal paramagnetic gas
  • Photon gas
  • Rubber band elasticity
  • Inhomogeneous systems

Exercises:

  • How not to modify the ideal gas equation of state [tex11]
  • Entropy and internal energy of the classical ideal gas [tex14]
  • Thermodynamic potentials of the classical ideal gas [tex15]
  • Chemical potential of the classical ideal gas [tex17]
  • Sound velocity in the classical ideal gas I [tex18]
  • Thermodynamics of an ideal paramagnet I [tex19]
  • Thermodynamics of an ideal paramagnet II [tex20]
  • Thermodynamics of an ideal paramagnet III [tex21]
  • Thermodynamics of a classical ideal paramagnetic gas I [tex22]
  • Thermodynamics of black-body radiation [tex23]
  • Carnot cycle of thermal radiation [tex24]
  • Heat capacities of the van der Waals gas [tex27]
  • Determining CV of condensed matter [tex28]
  • Assembling thermodyamic information [tex29]
  • Joule coefficient of van der Waals gas [tex31]
  • Joule-Thomson coefficient of van der Waals gas [tex32]
  • Effects of first virial correction on ideal gas properties [tex33]
  • Ideal gas heat capacity by design [tex35]
  • Thermodynamics of a real paramagnet [tex36]
  • Internal energy and entropy of van der Waals gas [tex38]
  • Rubber band heat engine [tex39]
  • Equation of state and adiabate of an elastic band [tex40]
  • Reconstructing the equation of state of a fluid system [tex42]
  • Reconstructing the equation of state of a gas [tex43]
  • Sound velocity in the classical ideal gas II [tex99]
  • Hydrostatic pressure [tex132]
  • Thermodynamics of a classical ideal paramagnetic gas II [tex133]
  • Polytropic process of classical ideal gas [tex138]
  • Heavy piston I [tex141]
  • Isothermal atmosphere [tex150]
  • Adiabatic atmosphere [tex151]
  • Homogeneous atmosphere [tex152]
  • Heavy piston II [tex170] 
  • Effect of mixing on chemical potential [tex173]

Additional materials:

  • Joule-Thomson inversion curves [tsl1]
  • Osmotic pressure [tln26]
  • Entropy landscape of paramagnetic salt [tsl2]
  • Mechanocaloric and thermomechanical effects [tln34] 

5. Thermodynamics of Phase Transitions I [tsc5]

  • Typical solid-liquid-gas phase diagram
  • Additional and alternative phases
  • Classification of phase transitions
  • Discontinuous transition
  • Continuous transition
  • Order parameter
  • Phase coexistence: Gibbs’ phase rule
  • Clausius-Clapeyron equation
  • Effects of a uniform gravitational field

Exercises:

  • Entropy of supercooled liquid [tex30]
  • Coexistence line of continuous phase transition [tex37]
  • Heat capacity of vapor in equilibrium with liquid phase [tex41]
  • Melting or freezing? [tex51]
  • Triple-point phase changes I [tex52]
  • Abnormal phase behavior [tex54]
  • Phase coexistence of ammonia [tex55]
  • Discontinuous transition: change in internal energy [tex123]
  • Latent heat and response functions [tex124]
  • Dry ice [tex125]
  • Cooling down? Heating up? [tex153]
  • Triple-point phase changes II [tex156]
  • Effects of heat input [tex159]

Additional materials:

6. Thermodynamics of Phase Transitions II [tsc6]

  • Law of corresponding states (using van der Waals equation of state)
  • Maxwell construction (using Gibbs potential or Helmholtz potential)
  • Nucleation of droplets or bubbles (coexistence line, spinodal line)

Exercises:

  • Dieterici equation of state [tex34]
  • Latent heat and heat capacies at superconducting transition [tex44]
  • Mean-field ferromagnet I [tex45]
  • Mean-field ferromagnet II [tex46]
  • Structural transition of iron [tex53]

Additional materials:

  • Helium liquids and superfluidity [tln33]
  • Superconducting transition [tln35]
  • Thermodynamics of a ferromagnet [tsl5]
  • Mean-field ferromagnet [tln84]  

7. Kinetic Theory I [tsc7]

  • Statistical concept of uncertainty
  • Statistical concept of information
  • Statistical uncertainty and entropy
  • Kinetics of classical ideal gas
  • Maxwell velocity distribution
  • Boltzmann equation
  • H-function
  • H-theorem
  • H-theorem and irreversibility

Exercises:

  • Statistical uncertainty: verification of criteria [tex47]
  • Information regarding a census of birds [tex48]
  • Information of sequenced messages [tex61]
  • Pressure and mean-square velocity in classical ideal gas [tex49]
  • Maxwell velocity distribution (Maxwell’s derivation) [tex50]
  • Maxwell distribution in D dimensions [tex56]
  • Energy distribution for N ideal gas atoms [tex57]
  • Maxwell velocity distribution (Boltzmann’s derivation) [tex58]
  • Ideal-gas entropy and Boltzmann’s H-function [tex59]
  • Maxwell distribution from variational principle [tex60]
  • Doppler broadening of atomic spectral lines [tex63]

8. Kinetic Theory II [tsc9]

  • Gas container with tiny hole
  • Leakage from container with heat conducting walls
  • Leakage from container with insulating walls
  • Particle flow and energy flow between containers
  • Kinematic pressure and interaction pressure
  • Kinetic forces and mobility
  • Collision rate and mean free path

Exercises

  • Ideal gas atoms escaping from a container I [tex62]
  • Isotope separation via diffusion [tex65]
  • Ideal gas atoms escaping from a container II [tex176]
  • Ideal gas atoms escaping from a container III [tex177]
  • Toward thermal equilibrium via particle transfer [tex64]
  • Interaction pressure produced by Gaussian interparticle potential [tex66]
  • Average force of particle beam on heavy hard sphere [tex68]
  • Mobility of a hard sphere in a dilute gas [tex69]
  • Collision rate in a classical ideal gas [tex70]
  • Mean free path of particle in classical ideal gas [tex71]
  • Rate of chemical reaction in gas phase [tex67]
  • Effect of escaping particles on temperature of 1D ideal gas [tex72]

9. Microcanonical Ensemble [tsc10]

  • Classical Hamiltonian systems
  • Points and trajectories in phase space
  • Probability density in phase space
  • Probability flow in phase space
  • Classical Liouville operator
  • Stationarity condition for phase-space probability density
  • Density operator
  • Quantum time evolution
  • Stationarity condition for density operator
  • Gibbs entropy
  • Phase-space volume allocated per quantum state
  • Microcanonical ensemble
  • Aspects of significance
  • Simple applictions
  • Entropy of mixing revisited
  • Negative temperatures

Exercises:

  • Classical ideal gas [tex73]
  • Array of classical harmonic oscillators [tex74]
  • Array of quantum harmonic oscillators I [tex75]
  • Array of quantum harmonic oscillators II [tex126]
  • Quantum paramagnet [tex127]

10. Canonical Ensemble I [tsc11]

  • Extremum principle
  • Canonical partition function
  • Systems of noninteracting particles
  • From phase-space density to Maxwell velocity distribution
  • Ensemble averages
  • Energy fluctuations and heat capacity
  • Classical ideal gas (relativistic)
  • Inhomogeneous systems
  • Partition function and density of states

Exercises:

  • Nonrelativistic ideal gas [tex76]
  • Ultrarelativistic ideal gas [tex77]
  • Ultrarelativistic ideal gas in two dimensions [tex154]
  • Relativistic ideal gas I: canonical partition function [tex91]
  • Relativistic ideal gas II: entropy and internal energy [tex92]
  • Relativistic ideal gas III: heat capacity [tex93]
  • Classical ideal gas in uniform gravitational field [tex79]
  • Gas pressure and density inside centrifuge [tex135]
  • Irreversible decompression [tex136]
  • Irreversible heat exchange [tex137]
  • Reversible decompression [tex139]
  • Reversible heat exchange [tex140]
  • Heavy piston I [tex141]
  • Ideal gas partition function and density of states [tex81]
  • Relative momentum of two ideal-gas particles [tex80]

11. Canonical Ensemble II [tsc12]

  • Vibrational heat capacities of solids
  • Theory of Dulong and Petit
  • Theory of Einstein
  • Atoms interacting via harmonic forces
  • Theory of Debye
  • Paramagnetism of localized magnetic dipoles
  • Langevin paramagnetism
  • Two-level system
  • Brillouin paramagnetism
  • Fluctuations in a magnetic system
  • Gases with internal degrees of freedom
  • Translational motion (classical)
  • Rotational motion (classical)
  • Rotational motion (quantum)
  • Vibrational motion (quantum)
  • Fine structure
  • Orthohydrogen and parahydrogen

Exercises:

  • Array of classical harmonic oscillators [tex78]
  • Array of quantum harmonic oscillators [tex82]
  • Vibrational heat capacity of a solid [tex83]
  • Anharmonic oscillator and thermodynamic perturbation [tex104]
  • Classical paramagnet [tex84]
  • Quantum paramagnet (two-level system) [tex85]
  • Quantum paramagnet (three-level system) [tex157]
  • Quantum paramagnet (Brillouin function) [tex86]
  • Ising trimer [tex142]
  • Fluctuation in a magnetic system [tex109]
  • Classical rotational entropies of HCl and N2 gases [tex88]
  • Classical rotational free energies of NH3 gas [tex87]
  • Quantum rotational heat capacity of a gas at low temperature [tex89]
  • Quantum rotational heat capacity of a gas at high temperature [tex90]

Additional materials:

  • Vibrational heat capacities of solids [tsl29]
  • Paramagnetic salts [tsl30]
  • Thermodynamic perturbation expansion [tln80]

12. Grandcanonical Ensemble [tsc13]

  • Extremum principle
  • Grandcanonical partition function
  • Density fluctuations and compressibility
  • Gentle introduction to quantum statistics
  • Permutation symmetry
  • Occupation number representation
  • Canonical partition function (for quantum gases)
  • Grandcanonical partition function (for quantum gases)
  • Grand potential
  • Average number of particles and state occupancies
  • Entropy and state occupancies
  • Internal energy and state occupancies
  • Fluctuations of state occupanices
  • Density of states
  • Occupancy of 1-particle states

Exercises:

  • Classical ideal gas [tex94]
  • Ultrarelativistic ideal gas [tex169]
  • Density fluctuations [tex95]
  • Density fluctuations and compressibility [tex96]
  • Energy fluctuations and thermal response functions [tex103]
  • Occupation number fluctuations [tex110]
  • Density of 1-particle states [tex111]
  • Maxwell-Boltzmann gas in D dimensions [tex112]
  • Some fantasy gas [tex171]
  • Ideal lattice gas [tex172]
  • Entropy and internal energy from state occupancies [tex178] 

13. Ideal Quantum Gases I: Bosons [tsc14]

  • Equation of state
  • Reference values
  • Isochores
  • Coexistence of gas and condensate
  • Isotherms
  • Isobars
  • Phase diagrams
  • Entropy
  • Internal energy
  • Heat capacity

Exercises:

Additional materials:

14. Ideal Quantum Gases II: Fermions [tsc15]

  • Equation of state
  • Chemical potential
  • Level occupancies
  • Isochores
  • Phase transition
  • Isotherms
  • Entropy
  • Internal energy
  • Heat capacity

Exercises:

Additional materials:

15. Nearly Free Electrons [tsc16]

  • Thermionic emission (Richardson effect)
  • Schottky effect
  • Photoelectric emission (Hallwachs effect)
  • Pauli paramagnetism (PPM)
  • PPM analyzed in canonical ensemble
  • PPM thermodynamic potentials and functions
  • PPM response functions
  • PPM magnetization curves (numerical analysis)
  • PPM magnetization curves at T = 0 (exact results)
  • PPM magnetization curves in D = 2 (exact analysis)
  • PPM isothermal susceptibility at H = 0
  • PPM correction to Langevin-Brillouin result at high T

Exercises:

  • Paramagnetic FD gas I: pressure and entropy [tex161]
  • Paramagnetic FD gas II: internal energy [tex162]
  • Paramagnetic FD gas III: heat capacity CVM [tex163]
  • Paramagnetic FD gas IV: heat capacity CVH [tex164]
  • Paramagnetic FD gas V: isothermal susceptibility [tex165]
  • Paramagnetic FD gas VI: isothermal compressibilities [tex166]
  • Paramagnetic FD gas VII: isobaric expansivity [tex167]
  • Paramagnetic FD gas VIII: magnetization curves at T > 0 [tex180]
  • Paramagnetic FD gas IX: magnetization curves at T = 0 [tex181]
  • Paramagnetic FD gas X: exact magnetization curve for D = 2 [tex182]
  • Paramagnetic FD gas XI: isothermal susceptibility at H = 0 [tex183]
  • Paramagnetic FD gas XII: Langevin-Brillouin limit at high T [tex184]

16. Thermodynamics of Phase Transitions III [tsc8]

  • Ginzburg-Landau theory for secon-order phase transition
  • Ginzburg-Landau theory for first-order phase transition
  • Ornstein-Zernike theory for correlations
  • Critical-point exponents
  • Critical singularities of magnetic system
  • Critical singularities of fluid system
  • Inequalities of critical-point exponents
  • Test of scaling laws
  • Marginal dimensionality

Exercises:

  • Order parameter of first-order Ginzburg-Landau transition [tex174]
  • Critical singularities of van der Waals gas [tex175]

 17. Interacting Degrees of Freedom [tsc17]

  • Nearly ideal classical gas

18. Ising model I [tsc18]

  • Ising magnet
  • Ising lattice gas
  • Mapping between magnet and lattice gas
  • Transfer matrix solution of 1D Ising magnet
  • Expectation values via transfer matrix
  • Correlation functions via transfer matrix
  • Ising lattice gas in D=1
  • Ideal lattice gas limit
  • Ising lattice gas equation of state in D=1
  • Ising lattice gas entropy in D=1
  • Ising lattice gas internal energy in D=1

Exercises:

  • Ideal lattice gas [tex172]
  • Ising chain: transfer matrix solution I [tex185]
  • Ising chain: transfer matrix solution II [tex189]
  • Ising lattice gas in D=1: equation of state [tex194]
  • Ising lattice gas in D=1: entropy I [tex195]
  • Ising lattice gas in D=1: entropy II [tex201]
  • Ising model in Bethe approximation [tex203] 

Additional materials:

  • Ising model and descendents [tln93]
  • Exchange interaction [tln94]
  • Metallic alloys [tln95]
  • T=0 phase diagrams of Ising chains [tln96]
  • Approximating the Ising model [tln97] 
  • Equivalent-neighbor Ising model [tln98]

19. Coordinate Bethe Ansatz [tsc19]

  • NLS model
  • Free bosons
  • Impenetrable bosons and free fermions
  • Two bosons with finite contact repulsion
  • Three bosons subject to finite two-body contact repulsion
  • General Bethe ansatz equations of the NLS model
  • Trigonometric Bethe ansatz equations
  • Iterative solutions
  • Particles and holes
  • Densities of particle momenta and hole momenta
  • Ground state of the NLS model from Lieb-Liniger equation

Exercises:

  • Wave function of impenetrable bosons for N=2 and N=3 [tex190]
  • Two-boson Bethe wave functions [tex191]
  • Three-boson Bethe ansatz equations [tex192]
  • Trigonometric Bethe ansatz equations for the NLS model [tex193]

20. Statistical Interactions I: Combinatorics [tsc20]

  • Fermions
  • BosonsC
  • Size L and XL particles
  • Semions
  • Particles with internal degrees of freedom
  • Distinguishable species of particles in shared orbitals
  • Hosts and caps
  • Hosts, hybrids, and caps
  • Hosts, hybrids, and tags
  • Configurational entropy
  • Examples with one species
  • Example with two species
  • Semions versus hosts and caps

Exercises:

  • Configurational entropy of statistically interacting particles [tex186]
  • Hosts and tags at level 1 [tex187]
  • Hosts and tags at level 2 [tex188]

Additional materials

  • Particles at two levels [tln91]
  • Merging particle species [tln92]

 21. Statistical Interactions II: Partition Functions [tsc21]

  • Conversion of dynamical interactions into statistical interactions
  • Partition function, average occupancies, and entropy

22. Ergodic Theory [tsc22]

Last updated 08/07/22

Copyright © 2025 University of Rhode Island.

The University of Rhode Island
Think Big, We Do.
A-ZDirectoryContact UsJump to top