Gerhard Müller

Department of Physics, University of Rhode Island

URI
Think Big, We Do.
Rhode Island Seal

Teaching

 

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Mathematical Methods of Physics

These lecture notes for the courses PHY510/610 are a work in progress at this time. Amendments, improvements, and corrections wil be made continually. The topics listed are interrelated in intricate ways. They do not reflect a sequence of course materials. The lectures visit each topic multiple times.

Complex Analysis 

  • Complex numbers [gmd7-A]
  • Stereographic projection
  • Complex functions
  • Complex derivatives
  • Differential operators
  • Orthogonal families of curves
  • Line integrals [gmd7-B]
  • Cauchy’s theorem
  • Cauchy integrals
  • Taylor series
  • Laurent series
  • Residues

Exercises:

  • Trigonometric relations made transparent by complex variables [gex16]
  • Search for zeros of functions in the complex plane I [gex18]
  • Constructing inverse trigonometric functions I [gex19]
  • Constructing analytic function from harmonic function [gex21]
  • Derivatives of inverse trigonometric functions [gex22]
  • Harmonic and analytic functions I [gex54]
  • Applications of L’Hospital’s rule [gex55]
  • Orthogonal family of functions I [gex56]
  • Conducting plates intersecting at right angle [gex57]
  • Electric potential and field at edge of large conducting plate [gex58]
  • Fringe electric potential and fringe field of parallel plates [gex59]
  • Differential operators acting on complex functions I [gex60]
  • Line integral in complex plane I [gex77]
  • Green’s theorem adapted to complex functions [gex78]
  • Application of Cauchy’s theorem I [gex79]
  • Argument theorem in complex analysis [gex80]
  • Poisson integrals for circle in complex plane [gex81]
  • Application of Cauchy’s theorem II [gex82]
  • Poisson integrals for half plane in complex analysis [gex83]
  • Applications of Poisson integrals in complex analysis I [gex84]
  • Laurent series of analytic functions I [gex85]
  • Laurent series of analytic functions II [gex86]
  • Laurent series of analytic functions III [gex87]
  • Residues of isolated singularities of complex functions [gex88]
  • Definite integral via residue theorem I [gex89]
  • Definite integral via residue theorem II [gex90]
  • Definite integral via residue theorem III [gex91]

Additional Materials:

  • Complex functions in electroststics [gam1]

Special functions 

  • Elementary functions [gmd4]
  • Special functions
  • Gamma function [gmd4A]
  • Beta function
  • Incomplete Gamma function
  • Binomial series
  • Error function [gmd4B]
  • Fresnel integrals
  • Elliptic integrals and elliptic functions [gmd4C]
  • Legendre polynomials and functions [gmd4D]
  • Spherical harmonics [gmd4E]
  • Bessel functions [gmd4F]
  • Modified Bessel functions

Exercises:

  • Recurrence relation for Gamma function [gex2]
  • Relation between Gamma and Beta function [gex3]
  • Complete elliptic integrals: series expansion [gex8]
  • Area and circumference of an ellipse [gex9]
  • Plane-pendulum oscillations [gex10]
  • Plane-pendulum rotations [gex11]
  • Electric field of charged ring and elliptic integrals [gex34]
  • Magnetic field of circular current and elliptic integrals [gex35]
  • Duplication relation between Gamma for Gamma function [gex39]
  • Euler’s product representation of Gamma function [gex53]
  • Polygamma function: series representation, recurrence relation [gex92]
  • Polygamma function: integral representation, asymptotic series [gex93]
  • Complementary error function: asymptotic expansion [gex94]
  • Relations between error function and Fresnel integrals [gex95]

Additional Materials:

Matrix Operations 

  • Fundamental properties, operations, and relations [gmd6-A]
  • Determinants 
  • Inverse matrix
  • Orthogonality and unitarity
  • Systems of linear equations
  • Eigenvalues and eigenvectors
  • Mathematica notebook [gmd6-A.nb]

Exercises:

  • Matrix operations I: matrix multiplication [gex40]
  • Matrix operations II: Laplace expansion of determinant [gex41]
  • Matrix operations III: inverse square matrix [gex42]
  • Matrix operations IV: orthogonal matrix [gex43]
  • Matrix operations V: unitary matrix [gex44]
  • Matrix operationss VI: determinant of matrix product [gex45]
  • Matrix operations VII: system of linear equations [gex46]
  • Matrix operations VIII: eigenvectors of symmetric matrix [gex47]
  • Matrix operations IX: eigenvectors of Hermitian matrix [gex48]
  • Matrix operations X: eigenvectors of orthogonal matrix [gex49]
  • Matrix operations XI: eigenvectors of unitary matrix [gex50]
  • Matrix operations XII: eigenvectors of asymmetric matrix [gex51]
  • Matrix operations XIII: eigenvectors of transition matrix [gex52]

Additional Materials:

Vector Analysis 

  • Vector addition [gmd1-A]
  • Dot product of vectors
  • Cross product of vectors
  • Triple product of vectors
  • Reciprocal vectors
  • Vector functions
  • Scalar and vector fields
  • Differential operators
  • Identities involving differential operators
  • Differentials of scalars
  • Differentials of vectors
  • Mathematica notebook [gmd1-A.nb]
  • Vector integrations [gmd1-B]
  • Line integrals
  • Surface integrals
  • Differential operators from integrals
  • Integral theorems
  • Green’s identities
  • Integration by parts generalized
  • Helmholtz theorem

Exercises:

  • Electric dipole field [gex26]
  • Magnetic dipole field [gex27]
  • Reciprocal vectors [gex28]
  • Expansion of vector in non-orthonormal basis [gex29]
  • Diagonals of a parallelogram [gex30]
  • Law of sines for spherical triangle [gex32]
  • Common identities used in electrostatics and elsewhere [gex33]
  • Vector divisions? [gex36]
  • Gradients of related scalar functions [gex37]
  • Work done by conservative force I [gex63]
  • Work done by conservative force II [gex64]
  • Electrostatic field of two point charges [gex65]
  • Electrostatic field of three point charges [gex66]
  • Vector functions I [gex124]

Additional Materials:

Coordinate Systems 

  • General coordinates [gmd2-A]
  • Orthogonal coordinates
  • Gradient, divergence, curl, and Laplacian
  • Determination of scale factors
  • Cartesian coordinates
  • Cylindrical coordinates
  • Spherical coordinates
  • Parabolic cylindrical coordinates [gmd2-B]
  • Paraboloidal coordinates
  • Elliptic cylindrical coordinates
  • Prolate spheroidal coordinates
  • Oblate spheroidal coordinates
  • Ellipsoidal coordinates

Exercises:

  • Vector fields in curvilinear coordinates I [gex67]
  • Vector fields in curvilinear coordinates II [gex68]
  • Vector fields in curvilinear coordinates III [gex69]
  • Laplacian operating on vector field [gex70]
  • Parabolic cylindrical coordinates [gex71]
  • Paraboloidal coordinates [gex72]
  • Elliptic cylindrical coordinates [gex73]
  • Prolate spheroidal coordinates [gex74]
  • Oblate spheroidal coordinates [gex75]
  • Ellipsoidal coordinates [gex76]

Additional Materials:

Tensor Analysis 

  • Introduction [gmd5-A]
  • Inertia tensor
  • From matrices to tensors
  • Tensors in real coordinate space
  • Contravariance versus covariance
  • Invariance
  • Mixed variance
  • Affine tensors
  • Cartesian tensors
  • Tensor operations [gmd5-B]
  • Quotient rule
  • Arrays of elements — vectors, matrices, tensors

Exercises:

  • Inertia tensor from momentum of rigid body [gex96]
  • Inertia tensor from rotational kinetic energy of rigid body [gex97]
  • Tensor summation convention I [gex98]
  • Tensor summation convention II [gex99]
  • Tensor summation convention III [gex100]
  • From polar to rectangular coordinates and back: Jacobians [gex112]
  • Uniform vector field in plane made into a tensor [gex113]
  • Radial and azimuthal fields in a plane [gex117] 
  • Application of quotient rule I [gex118]
  • Application of quotient rule II [gex119]

Additional Materials:

  • Summation convention [gam2]

Ordinary Differential Equations

  • First-order ODEs [gmd10-A]
  • Second-order ODEs

Exercises:

  • First-order ODE: separation of variables I [gex4]
  • First-order ODE: separation of variables II [gex5]
  • First-order ODE: separation of variables III [gex6]
  • First-order ODE: exact differential I [gex7]
  • First-order ODE: integrating factor I [gex12]
  • First-order ODE: linearity [gex13]
  • First-order ODE: homogeneity [gex14]
  • First-order ODE: Bernoulli type [gex15]
  • First-order ODE: convertibility [gex17]
  • Second-order ODEs reducible to first order [gex20]
  • First-order ODE: general, particular, and singular solutions [gex23]
  • ODE for two-parameter family of conics [gex24]
  • First-order ODE: Clairaut type [gex25]
  • Second-order ODE: fixed points and isoclines I [gex101]
  • Second-order ODEs: fixed points and isoclines II [gex102]
  • Plane pendulum with attenuation: fixed points and phase flow [gex103] 
  • Coupled first-order ODEs: fixed points and flow dynamics I [gex104]
  • Coupled first-order ODEs: fixed points and flow dynamics II [gex105]
  • Coupled first-order ODEs: fixed point and limit cycle [gex106]
  • Coupled first-order ODEs: Rössler band strange attractor [gex107]
  • Second-order ODE: reduction to first-order ODE I [gex108]
  • Second-order ODE: reduction to first-order ODE II [gex109]
  • Linear second-order ODE with degenerate roots [gex110]
  • Linearly damped harmonic oscillator: general solution [gex111]
  • Linear inhomogeneous ODE: undetermined constant parameters I [gex114]
  • Linear inhomogeneous ODE: undetermined constant parameters II [gex115]
  • Second-order ODE: reduction to first order III [gex116]

Additional Materials:

  • Linear ODEs [gam8]
  • General structure of ODE and solution
  • Homogeneous ODE with constant coefficients
  • Linearly damped harmonic oscillator
  • Particular solution of inhomogeneous ODE
  • Method of undetermined constant parameters
  • Method of variation of parameters
  • ODEs of classical dynamical systems [gam3]
  • Dynamical systems of two variables
  • Isoclines
  • Fixed points
  • Conservative forces
  • Limit cycle
  • Dynamical systems of three variables
  • Is classical mechanics a deterministic theory?

Integral Transforms 

  • General form and types [gmd8]
  • Laplace transform [gmd8A]
  • Fourier transform [gmd8B]

Exercises:

  • Linerar ODE solved via Laplace transform [gex61]
  • Laplace transform of derivatives of functions [gex62]

Additional Materials:

Partial Differential Equations

  • Classification [gmd11-A]
  • Structure og general solution according to type
  • Subsidiary conditions

Exercises:

  • PDEs solved and solutions visualized [gex120]
  • PDE solved via reduction to ODE I [gex121]
  • PDE solved via reduction to ODE II [gex122]
  • Laplace equation for conducting hyperbolic trough [gex123]

Additional Materials:

  • Laplace equation [gam4]
  • Diffusion equation [gam5]
  • Wave equation [gam6]
  • Schrödinger equation [gam7]
  • Fokker-Planck equation [gam9]
  • Navier-Stokes equation [gam10]

Probabilities 

  • Elementary probabilities [gmd9-A]
  • Elements of set theory
  • Elements of probability theory
  • Joint and conditional probabilities
  • Statistical uncertainty and information

Exercises:

Additional Materials:

Generalized Functions 

Exercises:

  • Representations of the Dirac delta function I [gex1]
  • Representation of the Dirac delta function II [gex38]

Additional Materials:

Functional Analysis [gmd12]

Exercises:

Additional Materials:

Differential Geometry [gmd13]

Exercises:

Additional Materials:

Calculus of Variation [gmd14]

Exercises:

  • Searching for extremum with Lagrange multiplier [gex31]

Additional Materials:

Group Theory and Symmetry Transformations [gmd15]

Exercises:

Additional Materials:

Some Relevant Textbooks and Monographs:

  • L. C. Andrews: Special Functions for Engineers and Applied Mathematicians. Macmillan, 1985.
  • L. C. Andrews: Elementary Partial Differential Equations. Academic Press, 1986.
  • L. C. Andrews and B. K. Shivamoggi: Integral Transforms for Engineers and Applied Mathematicians. Macmillan, 1988.
  • G. B. Arfken and H. J. Weber: Mathematical Methods for Physicists.  Harcourt, 2001.
  • R. Bronson and G. B. Costa: Differential Equations. McGraw-Hill, 2014.
  • R. Courant and D. Hilbert: Methoden der Mathematischen Physik I, II. Springer, 1968.
  • P. Dennery and A. Krzywicki: Mathematics for Physicists. Dover, 1995.
  • G. H. Golub and C. F. van Loan: Matrix Computations. Johns Hopkins University Press, 1985.
  • M. Karbach: Mathematische Methoden der Physik. De Gruyter, 2017.
  • D. C. McKay: Tensor Calculus. McGraw Hill, 2011.
  • D. E. Neuenschwander: Tensor Calculus for Physics. Johns Hopkins University Press, 2015
  • M. R. Spiegel: Advanced Mathematics for Engineers and Scientists. McGraw-Hill, 1971.
  • M. R. Spiegel, S. Lipschutz, and D. Spellman: Vector Analysis. McGraw-Hill, 2009.
  • M. R. Spiegel, S. Lipschutz, J. J. Schiller,and D. Spellman: Complex Variables. McGraw-Hill, 2009.

Last updated: 09/05,23

Copyright © 2024 University of Rhode Island.

The University of Rhode Island
Think Big, We Do.
A-ZDirectoryContact UsJump to top